The role of the 3-hydroxy 3-methylglutaryl coenzyme A reductase cytosolic domain in karmellae biogenesis.

نویسندگان

  • D A Profant
  • C J Roberts
  • A J Koning
  • R L Wright
چکیده

In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using beta-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.

In yeast, increased levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase isozyme, Hmg1p, induce assembly of nuclear-associated ER membranes called karmellae. To identify additional genes involved in karmellae assembly, we screened temperature-sensitive mutants for karmellae assembly defects. Two independently isolated, temperature-sensitive strains...

متن کامل

Increased amounts of HMG-CoA reductase induce "karmellae": a proliferation of stacked membrane pairs surrounding the yeast nucleus

Overproduction of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in yeast resulted in striking morphological effects on the structure of intracellular membranes. Specifically, stacks of paired membranes closely associated with the nuclear envelope were observed in strains that over-produced the HMG1 isozyme, one of two isozymes for HMG-CoA reductase in yeast. These nuclear...

متن کامل

Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells.

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formation...

متن کامل

Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase activities.

The activities of cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase [3-hydroxy-3-methylglutaryl-CoA acetoacetyl-CoA-lyase (CoA-acylating), EC 4.1.3.5] and microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase[mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34], two sequential enzymes in the cholesterol biosynthetic pathway, were shown to be regulated coordinately in the ad...

متن کامل

Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation.

A full length cDNA for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, the membrane-bound glycoprotein that regulates cholesterol synthesis, was isolated from a human fetal adrenal cDNA library. The nucleotide sequence of this cDNA shows that the human reductase is 888 amino acids long and shares a high degree of homology with the hamster enzyme. The amino-terminal membrane-bound domain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 1999